
Assignment 1: Manipulating the Game Board 

Objective 
In this assignment, you will implement and test functions that manipulate the Connect 4 game board, allowing 
players to place tokens in specific columns and check for available spaces. 

Instructions 
1.​ Complete each function according to the specifications described below. 
2.​ After implementing a function, run tests.py to confirm that it works as specified. Many functions rely 

on previously written functions, so complete them in order. Do not move on to the next function until the 
current one works correctly. 

3.​ If a test fails, fix the related function and re-run your tests. 
4.​ The tests.py file includes test cases for several functions. However, some functions do not yet have 

tests. You will need to write your own tests for those functions. 

Tips for Testing: 

●​ Make multiple test calls to each function. Consider edge cases and potential issues that could break the 
function. 

●​ Test edge cases, such as: 
○​ Placing tokens in the first and last rows/columns. 
○​ Dropping tokens into full columns. 

●​ For functions that return Boolean values, test both valid and invalid cases. 

Function Descriptions 

make_board(num_rows=6, num_cols=7) 

Your first task is to create the game board. A Connect 4 board is a grid with multiple rows and columns. This 
function should: 

●​ Create a 2D list (a list of lists) with the specified number of rows and columns. 
●​ Default to a 6-row by 7-column grid unless different values are provided. 
●​ Initialize all slots with 0, where each 0 represents an empty space. 
●​ Return the 2D list. 

Note: This function is purely for data management and does not control the game's visual appearance.​
 

row_is_valid(board, row) 

This function checks if the given row index is valid. A row index is valid if: 



●​ It is greater than or equal to 0. 
●​ It is less than the total number of rows in the board. 

This ensures that players do not attempt to interact with a non-existent row.​
 

column_is_valid(board, column) 

Similar to row_is_valid, this function checks whether the provided column index is within bounds. A 
column index is valid if: 

●​ It is greater than or equal to 0. 
●​ It is less than the total number of columns in the board. 

This ensures that players only drop tokens into valid columns.​
 

location_is_valid(board, row, column) 

This function combines the checks from row_is_valid and column_is_valid. It should: 

●​ Return True if both the row and column indices are within the board’s bounds. 
●​ Return False otherwise. 

Hint: Instead of rewriting the logic from row_is_valid and column_is_valid, call those functions inside 
this one.​
 

location_empty(board, row, column) 

This function checks whether a given location on the board is empty. It should: 

●​ Return True if the board slot at the given row and column contains 0. 
●​ Return False if the slot is occupied by a token.​

 

place_token(board, token, row, column) 

This function places a player's token on the board at the specified row and column. The token should replace 
the 0 at that position. 

●​ The token can be any value, but use 1 and 2 to represent Player 1 and Player 2, respectively. 
●​ It does not need to check if the space is empty before placing a token. Overwriting an existing token is 

allowed. This design makes the function reusable for different types of games.​
 

column_available(board, column) 



This function checks if there is space available in a specific column to drop a token. 

●​ A column has space if the topmost row in that column is empty (0). 
●​ If the first row is already occupied, the column is full, and no more tokens can be dropped. 
●​ The function should return: 

○​ True if there is space available. 
○​ False if the column is full.​

 

drop_token(board, column, token) 

This function drops a player's token into a specified column. It should: 

●​ Find the lowest available space in the column (i.e., the first empty row from the bottom). 
●​ Place the token in that row. 
●​ Return the row index where the token was placed. 
●​ If the column is full, return -1. 

Hint: In a physical Connect 4 game, a token falls until it reaches either the bottom of the board or another 
token. However, instead of checking from the top down, a more efficient approach is to: 

1.​ Start checking from the bottom row of the grid. 
2.​ Stop at the first empty slot found. 
3.​ Place the token and return the row index. 

 


	Assignment 1: Manipulating the Game Board 
	Objective 
	Instructions 
	Tips for Testing: 

	Function Descriptions 
	make_board(num_rows=6, num_cols=7) 
	row_is_valid(board, row) 
	column_is_valid(board, column) 
	location_is_valid(board, row, column) 
	location_empty(board, row, column) 
	place_token(board, token, row, column) 
	column_available(board, column) 
	drop_token(board, column, token) 



